فناوری نانو چیست و چگونه تولید می شود ؟

لاستیک های هنری و صنعتی مل

فناوری نانو چیست و چگونه تولید می شود ؟

۳۱۲ بازديد

فناوری نانو چیست و چگونه تولید می شود ؟

تعریف اولیه فناوری نانو ، یا Nanotechnology مونتاژ اتم‌ها بود که در سـال 1959  اولین منبع ثبت شده مـربـوط بـه آن را فیـزیکدانـی بـه نام ریچـارد فیـنمن به چاپ رسانده است.

فناوری نانو یک فناوری معکوس یعنی به صورت پایین به بالا است که اجزای مواد را در ساختار بسیار کوچک کنار هم گذاشته و ساختاری متفاوت از مواد متداول تولید شده ایجاد می‌کند. بنابراین مواد تولید شده به این روش نقایص کمتر و کیفیت بالاتری دارند.

نانوکامپوزیت‌های پلیمری در مجامع علمی و صنعتی مخصوصا در بیست سال اخیر مورد توجه قرار گرفته‌اند.

برای  مثال در آمریکا در سال 1997، 116 میلیون دلار برای تحقیق در این زمینه هزینه شد که در سال 2004 این رقم به 961 میلیون دلار رسید. یعنی در هفت سال تقریباً 9 برابر !!!

شرکت Business communications Co. Inc. (BCC) در یک بررسی اقتصادی نشان داده است که بازار نانوکامپوزیت‌های پلیمری در سال 2003،24.5 میلیون پوند به ارزش 90.8 میلیون دلار بوده است و پیش بینی می‌شود که این رقم با رشد متوسط 18.4 درصد در سال 2008 به 211.1 میلیون دلار برسد.

حتی پیش‌بینی شده است که اگر پیشرفت فناوری نانو با موارد فنی همگام روبه‌رو شود در بعضی از کاربردها این بازار با سرعت بیش‌ از 20 % در سال رشد کند.

نانوکامپوزیت‌های پلیمری جایگزینی قوی برای پلیمرهای حاوی پرکننده یا آلیاژهای پلیمری متداول هستند.

در نانوکامپوزیت‌ها ابعاد  تقویت به چند نانومتر می‌رسد، بر خلاف کامپوزیت‌های متداول که تقویت در آنها در ابعاد میکرون روی می‌دهد.

ارزش افزوده نانوکامپوزیت‌های پلیمری تنها بر اساس بهبود خواص مکانیکی پلیمر‌ها یا جایگزینی پرکننده‌های متداول‌ نیست بلکه پرکننده‌های نانو در مقادیر بسیار کم، خواص ویژه‌ای را بدون ایجاد تغییر زیاد در خواص مکانیکی یا فرآیند‌پذیری، در پلیمرها ایجاد می‌کنند که پلیمر اولیه فاقد آن است، متداول‌ترین پرکننده‌های نانو در پلیمرها، سیلیکات‌های لایه‌ای نانو و نانولوله‌های کربنی هستند.

 

پرکننده‌های لایه‌ای در فناوری نانو سیلیکا چیست ؟

سیلیکات‌هایی که در ساخت نانوکامپوزیت‌ها به کار می‌روند، ساختاری لایه‌ای با ضخامت حدود یک نانو متر دارند که طول آنها متغیر است و به چند میکرون هم می‌رسد. بنابراین نسبت طول به ضخامت آن بسیار بالا و بیشتر از هزار است. این لایه‌ها توده‌ای تشکیل می‌دهند که در بین آن فاصله‌هایی وجود دارد که از این پس آنها را با نام بین‌لایه‌ها (interlayer) خواهیم شناخت.

با جایگزینی ایزومورفیک بین لایه‌ها ، یک بار منفی ایجاد می‌شود که ساختار آلکالی یا آلکالین کاتیون‌های معدنی درون بین لایه‌ها را موازنـه مـی‌کند. سطح کاتیـون‌ها مانند یـون‌های توده‌ای (bulky) آلکیل آمونیوم، فاصله بین لایه‌ها را افزایش داده و انرژی سطحی پرکننده را کاهش می‌دهد. بنابراین این پرکننده‌های اصلاح شده که به رس آلی (OrganoClay)  معروفند، با پلیمرها سازگارتر و نانوکامپوزیت‌های لایه‌ای با سـیلیـکا شکل می‌گیرد.

در این بین ، مـونت‌موریلونیت  (montmorillonite)، هکتوریت (hectorite) و ساپونیت (saponite) متداول‌ترین پرکننده‌های سیلیکایی لایه‌ای هستند.

 

روش‌های ساخت نانوکامپوزیت‌ها چگونه است ؟

در صنایع پلیمری نانوسیلیکات‌ها، متداول‌تر از بقیه مواد نانو هستند. روش‌های مختلفی برای ساخت نانوکامپوزیت‌های سیلیکات‌های لایه‌ای به کار رفته است. اما سه روش، استفاده بیشتری دارند.

 

  1. پلیمریزاسیون درجا (insitu-polymerization)

برای اولین بار در تهیه مواد پلیمری حاوی نانوکلی(clay)  بر پایه پلی‌آمید-6 این روش  به کار رفته است. در این روش سیلیکاهای لایه‌ای به وسیله مونومر مایع یا محلول مونومر، متورم می‌شود، سپس مونومرها به درون لایه‌ها سیلیکات نفوذ کرده و پلیمریزاسیون در بین لایه‌ها اتفاق می‌افتد.

 

  1. روش محلولی:

روش محلولی مشـابه روش قبـلی است. رس آلی در یک حلال قطبی مانند تولوئن یا NَN,- دی متیل فرمامید متورم شده، و پلیمر حل شده در حلال به محلول قبلی افزوده شده و بین لایه‌ها جای می‌گیرد. سپس تبخیر حلال شکل میگیرد که معمولاً در خلاء اتفاق می‌افتد. این روش برای همه مواد پلیمری قابل اجراست اما اشکال عمده آن غیر قابل اجرا بودن آن در مقیاس صنعتی می‌باشد.

 

  1. روش اختلاط مذاب:

در این روش پلیمر مذاب که دارای ویسـکوزیـتـه پاییـنی است با پرکننـده نـانوکلیِ(clay)  آمیخته می‌شود. در این روش به دلیل افزایش بی‌نظمی، پلیمر به داخل لایه‌های کلی(clay) نفوذ می‌کند(شکل1). این روش، به دلیل پتانسیل بالایی که برای اجرا در مقیاس صنعتی دارد به شدت مورد توجه قرار گرفته است و نانوکامپوزیت‌های کلی(clay) بسیار زیادی به روش اکستروژن تولید شده است. تعداد زیادی از ترموپلاستیک‌های قطبی مانند پلی‌آمید-6، اتیل وینیل استات و پلی استایرن به این روش درون لایه‌های سیلیکاتی نفوذ کرده‌‌اند اما در مورد پلی اولفین‌ها که مصرف بسیار زیادی نیز دارند این فرآیند موفق نبوده است. اجرای این روش در لاستیک‌ها به دلیل ویسکوزیته بسیار زیاد و پدیده‌های الاستیک با موانع زیادی روبرو است و همین امر دلیل عدم پیشرفت قابل توجه نانوکامپوزیت‌های الاستومری در مقایسه با پلاستیک‌ها است.

 

ساختار نانوکامپوزیت‌های کلی (clay)  چگونه است ؟

بسته به طبیعت اجزای یک نانوکامپوزیت مانند نوع پلیمر، ماتریس و سیلیکات لایه‌ای یا کاتیون آلی بین لایه‌های سیلیکاتی سه ساختار در نانوکامپوزیت‌ها ممکن است ایجاد شود

 

  1. ساختار فاز‌های جدا:

اگر پلیمر نتواند بین لایه‌های سیلیکاتی نفوذ کند یک میکروکامپوزیت تولید می‌شود که مانند کامپوزیت‌های متداول بوده و امکان جدایی فازی در آن وجود دارد. به جز این نوع متداول کامپوزیت‌ها، امکان ایجاد دو ساختار دیگر وجود دارد.

 

  1. ساختار لایه لایه (Intercalated structures)

این ساختار با نفوذ یک یا چند زنجیر پلیمری به درون لایه‌های سیلیکا و ایجاد ساختار ساندویچی حاصل می‌شود.

 

  1. ساختار پراکنده یا پخش شده exfoliated ordelaminated structure)) :

این ساختار وقتی حاصل می‌شود که لایه‌های پرکننده سیلیکاتی به طور همگن و یکنواخت در بستر پلیمری توزیع شده باشند. این ساختار لایه‌های کاملاً جدا شده از اهمیت بسیار ویژه‌ای برخوردار است زیرا بر همکنش لایه‌های کلی(clay) و پلیمر را به حداکثر رسانده و تغییرات بسیار مشهودی را در خواص فیزیکی مکانیکی پلیمر ایجاد می‌کند.

 

خواص نانوکامپوزیت‌ها در چیست؟

نانوکامپوزیت‌ها در مقادیر 5-2 درصد وزنی، خواص پلیمرهای خالص را به طرز قابل توجهی بهبود می‌دهند. این ارتقای خواص عبارتند از:

 

  • خواص عبور پذیری (barrier) مانند نفوذپذیری و مقاومت در برابر حلال‌ها؛
  • خواص نوری
  • هدایت یونی خواص دیگر حاصل از ساختار لایه‌ای نانو سیلیکات‌ها در نانوکامپوزیت‌های پلیمری، افزایش پایداری حرارتی و مقاومت در برابر شعله (آتش) در مقادیر بسیار کم پرکننده می‌باشد.

 

کاربرد فناوری نانو در صنعت لاستیک چیست ؟

با توجه به تحقیقات به عمل آمده 4 ماده نانومتری هستند که کاربرد فراوانی در صنعت لاستیک سازی پیدا کرده اند. این چهار ماده مورد نظر عبارتند از :

  • اکسیدروی نانومتری(NanoZnO)
  • نانوکربنات کلسیم
  • الماس نانومتری
  • ذرات نانومتری خاک رس

 

با اضافه کردن این مواد به ترکیبات لاستیک، به دلیل پیوندهایی که در مقیاس اتمی بین این مواد و ترکیبات لاستیک صورت می گیرد، علاوه بر این که خواص فیزیکی آنها بهبود می یابد، می توان به افزایش مقاومت سایش، افزایش استحکام، بهبود خاصیت مکانیکی، افزایش حد پارگی و حد شکستگی اشاره کرد

همچنین در زیبایی ظاهری لاستیک نیز تاثیر گذاشته و باعث لطافت، همواری، صافی و ظرافت شکل ظاهری لاستیک می گردد. همه اینها به نوبه خود باعث می شود که محصولات نهایی، مرغوبتر، با کیفیت بالا، زیبایی و در نهایت بازارپسند باشند و توانایی رقابت در بازارهای داخلی و جهانی را داشته باشند.

 

 

کاربرد اکسیدروی نانومتری (NanoZnO) در لاستیک:

 

اکسیدروی نانومتری مادهای غیرآلی و فعال است که کاربرد گسترده ای در صنعت لاستیک سازی دارد.کوچکی کریستالها و خاصیت غیرچسبندگی آنها باعث شده که اکسیدروی نانومتری به صورت پودرهای زردرنگ کروی و متخلخل باشد.از خصوصیات استفاده از این تکنولوژی در صنعت لاستیک، می توان به پایین آمدن هزینه ها، بازدهی بالا، ولکانیزاسیون(Volcanization) خیلی سریع و هوشمند و دامنه دمایی گسترده اشاره کرد.

اثرات سطحی و فعالیت بالای اکسیدروی نانومتری ناشی از اندازة بسیار کوچک، سطح موثر خیلی زیاد وکشسانی خوب آن است. استفاده از اکسید روی نانومتری در لاستیک باعث بهبود خواص آن می شود از جمله میتوان به زیبایی و ظرافت بخشیدن به آن، صافی و همواری شکل ظاهری، افزایش استحکام مکانیکی لاستیک، افزایش مقاومت سایشی (خاصیت ضد اصطکاکی و سایش)، پایداری دمایی بالا، طول عمر زیاد و همچنین افزایش حد پارگی ترکیبات لاستیک اشاره کرد که همگی اینها بصورت تجربی ثابت شده است.

براساس نتایج بدست آمده میتوان نتیجه گرفت بهبود یافتن خواص فیزیکی لاستیک در اثر اضافه شدن ZnO ناشی از پیوند ساختار نانومتری اکسید روی با مولکولهای لاستیک است که در مقیاس اتمی صورت می گیرد. اکسید روی نانومتری در مقایسه با اکسید روی معمولی دارای اندازة بسیار کوچک ولی در عوض دارای سطح موثر بسیار زیادی می باشد. از لحاظ شیمیایی بسیار فعال و همچنین به دلیل اینکه پیوندهای بین اکسیدروی نانومتری و لاستیک در مقیاس مولکولی انجام می گیرد، استفاده از اکسیدروی نانومتری خواص فیزیکی و خواص مکانیکی از قبیل حد پارگی، مقاومت سایشی و … ترکیبات لاستیک را بهبود می بخشد.

 

کاربرد نانوکربنات کلسیم در لاستیک:

نانوکربنات کلسیم به طور گسترده ای در صنایع لاسیتک به کار می رود، زیرا اثرات خیلی خوبی نسبت به کربنات معمولی بر روی خواص و کیفیت لاستیک دارد.استفاده از نانوکربنات کلسیم در صنایع لاستیک باعث بهبود کیفیت و خواص ترکیبات لاستیک می شود. از جمله مزایای استفاده از نانوکربنات کلسیم می توان به توانایی تولید در مقیاس زیاد، افزایش استحکام لاستیک، بهبود بخشیدن خواص مکانیکی )افزایش استحکام مکانیکی) و انعطاف پذیر شدن ترکیبات لاستیک اشاره کرد. همچنین علاوه بر بهبود خواص فیزیکی، ترکیبات لاستیک در شکل ظاهری آنها نیز تاثیر می گذارد و به آنها زیبایی و ظرافت می بخشد که این خود در مرغوبیت کالا و بازارپسند بودن آن تاثیر بسزایی دارد.نانوکربنات کلسیم سبک بیشتر در پلاستیک و پوشش دهی لاستیک به کار میرود.

برای به دست آوردن مزایای ذکر شده، نانوکربنات کلسیم به لاستیکهای طبیعی و مصنوعی از قبیل NP، EPDM ،SBS ،BR ،SBR اضافه می گردد. نتایج به دست آمده نشان می دهد که استحکام لاستیک بسیار بالا می رود.

استحکام بخشی نانوکربنات کلسیم برخواسته از پیچیدگی فیزیکی ناشی از پیوستگی در پلیمرهای آن و واکنشهای شیمیایی ناشی از سطح تعمیم یافته آن است.نانوکربنات کلسیم سختی لاستیک و حد گسیختگی پلیمرهای لاستیک را افزایش داده و حداکثر توانی که لاستیک می تواند تحمل کند تا پاره شود را بهبود می بخشد. همچنین مقاومت لاستیک را در برابر سایش افزایش می دهد.به کار بردن نانوکربنات کلسیم هزینه ها را پایین می آورد و سود زیادی را به همراه دارد و همچنین باعث به روز شدن تکنولوژی و توانائی رقابت در عرصه جهانی می گردد.

به طور کلی نانوکربنات کلسیم در موارد زیادی به طور کلی یا جرئی به ترکیبات لاستیک جهت افزایش استحکام آنها افزوده می شود.

 

کاربرد ساختارهای نانومتری الماس در لاستیک:

 

الماس نانومتری به طور گسترده ای در کامپوزیت ها و از جمله لاستیک در مواد ضد اصطکاک، مواد لیزکننده به کار می رود. این ساختارهای نانومتری الماس از روش احتراق تولید می شوند که دارای خواص برجسته ای هستند از جمله می توان به موارد زیر اشاره کرد:

  • ساختار کریستالی – بلوری
  • سطح شیمیایی کاملا ناپایدار
  • شکل کاملا کروی
  • ساختمان شیمیایی بسیار محکم
  • فعالیت جذب سطحی بسیار بالا

 

در روسیه، الماس نانومتری با درصدهای مختلف به لاستیک طبیعی ، Poly Soprene Rubber  و FluorineRubber  برای ساخت لاستیک هایی که در صنعت کاربرد دارند از قبیل کاربرد در تایر اتومبیل، لوله های انتقال آب و … مورد استفاده قرار می گیرد.

نتایج به دست آمده نشان می دهد که با اضافه کردن ساختارهای نانومتری الماس به لاستیک ها خواص آنها به شکل قابل توجهی بهبود می یابد از جمله می توان به :

 

  • 4  الی 5 برابر شدن خاصیت انعطاف پذیری لاستیک
  • افزیش 2 الی 5/2 برابری درجه استحکام
  • افزایش حد شکستگی تا حدود 2 Kg/cm700-620
  • 4  برابر شدن قدرت بریده شدن آنها
  • و همچنین به اندازة خیلی زیادی خاصیت ضدپارگی آنها در دمای بالا و پایین بهبود می یابد.

 

 

کاربرد ذرات نانومتری خاک رس در لاستیک:

 

یکی از مواد نانومتری که کاربردهای تجاری گسترده ای در صنعت لاستیک پیدا کرده است و اکنون شرکت های بزرگ لاستیک سازی بطور گسترده ای از آن در محصولات خود استفاده می کنند، ذرات نانومتری خاک رس است که با افزودن آن به لاستیک خواص آن بطور قابل ملاحظه ای بهبود پیدا می کند که از جمله می توان به موارد زیر اشاره کرد :

 

  • افزایش مقاومت لاستیک در برابر سایش
  • افزایش استحکام مکانیکی
  • افزایش مقاومت گرمایی
  • کاهش قابلیت اشتعال
  • بهبود بخشیدن اعوجاج گرمایی

 

چند ایده های مطرح شده جهت کاربردهای بیشتر و بهتر در فناوری نانو : 

 

  1. افزایش دمای اشتعال لاستیک : تهیه نانوکامپوزیت الاستومرها از جملهSBR مقاوم، به عنوان مواد پایه در لاستیک سبب بهبود برخی خواص از جمله افزایش دمای اشتعال و استحکام مکانیکی بالامی شود و دلیل اصلی آن حذف مقدار زیادی از دوده است.

 

  1. کاهش وزن لاستیک : تهیه و بهینه سازی نانوکامپوزیت الاستومرها با وزن کم از طریق جایگزین کردن این مواد با دوده در لاستیک، امکان حذف درصد قابل توجهی دوده توسط درصد بسیار کم از نانوفیلر وجود دارد. بطوریکه افزودن حدود 3 تا 5 درصد نانوفیلر می تواند استحکام مکانیکی معادل 40 تا 45 درصد دوده را ایجاد کند. بنابراین با افزودن 3 تا 5 درصد نانوفیلر به لاستیک، وزن آن به مقدار قابل توجهی کاهش می یابد.

 

  1. افزایش مقاومت در مقابل نفوذپذیری گاز : نانوکامپوزیت الاستومرها بویژه EPDM بدلیل دارا بودن ضریب عبوردهی کم نسبت به گازها بویژه هوا می توانند در پوشش داخلی تایر و تیوب ها مورد استفاده قرار می گیرد. زیرا یکی از ویژگیهای نانوکامپوزیت EPDM مقاومت بسیار بالای آن در برابر نفوذ و عبور گازها می باشد. بنابراین این نانوکامپوزیت ها می تواند جایگزین مواد امروزی گردد. همچنین این نانوکامپوزیت ها از جمله الاستومرهایی است که می تواند در آلیاژهای مختلف با ترموپلاستیکها کاربردهای وسیعی را در صنعت خوردو داشته باشد.

 

  1. قطعات لاستیکی خودرو : نانوکامپوزیت ترموپلاست الاستومرها می تواند به عنوان یک ماده پرمصرف در صنایع ساخت و تولید قطعات خوردو بکار رود. از ویژگی های این مواد، بالا بودن مدول بالا ، مقاومت حرارتی، پایداری ابعاد، وزن کم، مقاومت شعله می باشد. لذا نانوکامپوزیت ترموپلاستیک الاستومرهای پایه EPDM و PP می توانند تحول چشمگیری را در ساخت قطعات خوردو ایجاد نماید.

 

  1. افزایش مقاومت سایشی لاستیک : استفاده از نانوسیلیکا و نانواکسیدروی در ترکیبات تایر سبب تحول عظیمی در صنعت لاستیک می شود. بطوریکه با افزودن این مواد به لاستیک علاوه بر خواصی ویژه ای که این مواد به لاستیک می دهند، امکان افزایش مقاومت سایشی این لاستیکها وجود دارد.

 

  1. نسبت وزن تایر به عمر آن : با افزودن میزان مصرف یکی از نانوفیلرها می توان مصرف دوده را پایین آورد. به عبارت دیگر اگر وزن تایر کم شود، عمر لاستیک افزایش می یابد. بنابراین جهت بالا بردن عمرلاستیک کافی است با افزودن یک سری مواد نانومتری به لاستیک عمر آن را افزایش داد.

 

کاربرد فناوری نانو در صنعت لاستیک

 

استفاده از نانولوله‌های کربنی حساس به رامان در ولکانیزاسیون لاستیک طبیعی

 

در حال حاضر کاربرد نانولوله‌ها در تقویت پلیمرها باعث بهبود خواص گرمایی و الکتریکی می‌شود. اگر چه ساخت کامپوزیت‌های لاستیکی همراه با نانولوله کربنی تک‌ دیواره هنوز با موانع فنی متعددی روبه‌روست که باید حل شود؛ در میان اینها یکی از اصلی‌ترین مسائل مورد توجه پراکندگی نانولوله‌های کربنی است.

امواج صوتی یکی از روش‌های پراکندگی مؤثر است. اگر چه امواج صوتی برای مدت طولانی و با قدرت زیاد دارای آثار تخریبی است، یکی از روش‌های پراکندگی مؤثر است. با وجود این می‌توان از یک سطح بهینه از امواج صوتی  (SONICATION)  استفاده کرد. از موانع دیگر می‌توان به گران بودن نانولوله‌های کربنی تک‌دیواره اشاره کرد که البته ممکن است بهسازی خصیصه مکانیکی ترکیب ارزش این هزینه کردن را نداشته باشد. نانولوله‌های کربنی تک‌دیواره ارزش استفاده در برخی کاربرد‌ها نظیر حسگر کششی رامان، مواد انباره هیدروژن و ترکیبات خازنی سطح بالا را دارند. طیف‌بینی رامان برای اثبات وجود نانولوله‌های کربنی، تعیین قطر نانولوله‌ها، توزیع قطری بسته‌های نانولوله مورد استفاده قرار می‌گیرد. نانولوله‌های کربنی تک‌دیواره طیف رامان متمایزی دارند. در این آزمایش بی‌نظمی پیک *D رامان تهییج شده مربوط به نانولوله‌های کربنی که در محدوده 2500  تا 2700 Cm-1 قرار دارد، مورد بررسی قرار می‌گیرد.

از نانولوله‌های کربنی تک‌دیواره می‌توان به عنوان حسگر فشار استفاده کرد. پیک *D برای تشخیص کشش و انتقال در پلیمر‌ها مورد استفاده قرار می‌گیرد و به وسیله طیف‌بینی رامان تعیین کمیت می‌شود. این نوع از کاربرد تنها به میزان کمی از نانولوله‌های کربنی کمتر از 5/0درصد وزنی نیاز دارد و حساسیت اندازه‌گیری می‌تواند در مقیاس بزرگ ماکرو و میزان مولکولی باشد. نانولوله‌های کربنی همچنین می‌توانند در الاستومرها برای سنجش فشار‌های بینابینی مورد استفاده قرار گیرند. ویژگی‌های یک الاستومر ویژه با ماهیت اتصالات عرضی در شبکه مشخص می‌شود. در حالی که هنوز گوگرد به مراتب مؤثرترین عامل ولکانش است افزودن میزان کمی از تسریع‌کننده‌ها نه فقط فرایند‌ها را تسریع می‌کند، بلکه کمیت و نوع اتصالات عرضی شکل گرفته در ولکانش را نیز تعیین می‌کند. مطالعات مختلف در مورد اثر ساختار‌های اتصالا ت عرضی در ولکانش لاستیک با استفاده از گوگرد برای چندین دهه مورد بررسی قرار گرفته است. دانسیته تراکم اتصالات عرضی عامل مهمی است که بر ویژگی‌های فیزیکی شبکه الاستومری ولکانیزه شده تأثیر می‌گذارد. دانسیته تراکم یک شبکه اساساً به تعداد زنجیره‌ها، وزن مولکولی و نسبت گوگرد به شتاب‌دهنده بستگی دارد. چندین روش برای ارزیابی تراکم اتصالات عرضی وجود دارد. متورم کردن به وسیله یک حلال ارگانیک یکی از متداول‌ترین روش‌ها برای توصیف شبکه‌های الاستومر است. اندازه گیری‌های تنش-کرنش یکی از روش‌های غیر مستقیم برای اندازه‌گیری میزان تراکم اتصالات عرضی است. هدف اصلی این روش ساخت کامپوزیت (SWNT/NR) و مقایسه ویژگی‌های مکانیکی کامپوزیت و لاستیک طبیعی خالص است. بعد از آن امکان استفاده از نانوحسگرهای رامان برای توصیف شرایط ایجادلاستیک طبیعی با استفاده از میزان‌های مختلفی از گوگرد بررسی می‌شود. داده‌های تنش-کرنش تک‌محوری برای تحلیل تراکم اتصالات عرضی الاستومرهای ولکانیزه شده استفاده می‌شود و سپس از آن با نتیجه تحلیل رامان مقایسه می‌شود.

Tags: تولید کنندهتولید کننده Nanoتولید کننده Nano melrubbercoتولید کننده Nano technologyتولید کننده Nano technology melrubberc

تا كنون نظري ثبت نشده است
ارسال نظر آزاد است، اما اگر قبلا در فارسی بلاگ ثبت نام کرده اید می توانید ابتدا وارد شوید.